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Abstract—We investigate the sensitivity and nonlinear properties 
of a tunnel diode microwave detector as functions of the input 
power and the load impedance presented at the detector’s output. 
We estimate the systematic error associated with using a linear 
calibration model to estimate received power and, hence, 
brightness temperature from the nonlinear voltage-power 
transfer function of the detector. One estimate is provided by the 
two-tone method, the other by an empirical regression spline 
method. 

Keywords-calibration, microwave radiometer, nonlinearity, 
radiometer, remote sensing 

 INTRODUCTION 
Microwave remote sensing radiometers frequently use 

tunnel diode detectors. Often, nonlinearity in the diode detector 
is the primary cause for nonlinearity in the radiometer transfer 
function. Various methods have been used to model and 
account for the nonlinear detector response, including the two-
tone method, the constant-ratio method, and the amplitude-
modulation method [1, 2]. The two-tone method, in particular, 
has been favored because of its potential to provide estimates 
of relative brightness temperature error with very low 
variability. However, careful implementation of each method is 
essential to achieving useful results. Also, the basic assumption 
that the detector nonlinearity is accurately modeled by a 
quadratic function may not always hold. An independent means 
of verifying the methods and assumptions is needed. 

In principle, a measurement of the voltage output versus 
power input of the detector is preferable, since no assumptions 
are made as to the form of the detector nonlinearity. The 
measurement then closely mimics how the detector is used in 
the radiometer. This would facilitate empirical modeling of the 
detector transfer function, which can then be used to determine 
a suitable operating range or nonlinearity correction, or both. 

While the voltage output can be measured with very low 
uncertainty, measuring the power incident on the detector is 
difficult: the linearity of a typical commercial power meter is 
often no better than 3 % over its operating range. For example, 
in order for the brightness temperature error due to receiver 
nonlinearity to be less than 0.05 K, as specified for many of the 
channels on the Advanced Technology Microwave Sounder 
(ATMS) on NPOESS, the detector must be linear to better than 
0.02 % for a typical radiometer. 

We seek to demonstrate the feasibility of direct 
measurements of the voltage-power (V-P) transfer function for 
a tunnel diode detector for the dual purposes of providing a 
means for comparison to the two-tone method, as well as for 

developing suitable nonlinear models for fitting the detector 
response. Careful linearization of the power meter allows us to 
perform accurate V-P measurements.  Results of the two 
characterization methods are then presented and compared. 

DETECTOR POWER-VOLTAGE CHARACTERIZATION 

A. Power meter linearization – Setup 
Fig. 1 shows the experimental setup for characterizing the 

microwave power meter. Two commercial diode noise sources 
are combined, amplified, and passed through a band pass filter 
of 5 % bandwidth centered at 1 GHz. All measurements were 
performed in a laboratory environment controlled to within 
±0.5 ºC. The amplifiers were temperature controlled to within 
±0.01 ºC by use of water jackets. The procedure follows the 
common principle of a two-position attenuator method [3] 
except for the substitution of a second source and a power 
combiner in place of the attenuator. Switching one source on 
and off creates a nearly constant power ratio over a wide range 
of step attenuator settings with no random error due to 
connection repeatability or impedance mismatch changes. The 
power meter employs a diode sensor. Note that we do not 
require an accurate absolute power calibration, but we do need 
the response to be very linear for detector V-P characterization.  

B. Power meter linearization procedure 
In a power meter linearization experiment, we measure 

many pairs of powers (PL, PU). For each pair, we assume that 
the ratio of the unobserved true powers is well determined, but 
the absolute value of either true power is not.  Due to the 
additive bias and nonlinearities in the power meter, the 
observed ratio for the ith pair PU(i)/PL(i) differs, on average, 
from the true power ratio rtrue. To demonstrate this, we fit a 
linear model PU=αPL + ε, where α is the model parameter and ε 
is the prediction error, to the power pair data.  Since the 
fractional residuals (PU -α̂ PL)/PU clearly have structure (Fig. 
2), the power meter is nonlinear. We seek a nonlinear 
correction model to predict the true power in terms of the 
observed powers. 
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Fig. 1 Power meter calibration setup. 
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Fig. 2 Residuals before and after power meter linearization. 

Based on measured power mP  (either LP  or UP ) our  

predicted value of the true power P̂ is 
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In (1), the model parameters to be determined form a seven-
dimensional vector ),,,,,,( 543210 aaaaaa∆ , 0P  is a 
reference power (the maximum power observed is 
approximately 44 µW), and S is a scale factor.  We set 0P  to 
the maximum measured power in the calibration data set.  We 
model the additive bias as the product 0P∆ , where ∆  is a 
dimensionless model parameter to be determined.  Based on 
prior knowledge of the noise temperature of the two noise 
sources and the properties of the power combiner, we set truer  
= 1.73.  We determined the model parameters by minimizing 
the mean square prediction error as follows: 
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The predicted ratio r̂  does not depend on the scale factor S. 
We determined S by requiring that the maximum predicted 
power )1()( 00 ∆−= PPf . This implies that 

)1(1)1( ∆−−∆−= gS .  The estimated values of the model 
parameters of (4) are (∆ = 0.000912254, a0 = 0.98756,  
a1 =  0.067652,   a2 =  -0.31618,   a3  =  0.93176,   

a4 =  -1.28642,  a5 = 0.66817).   In Fig. 2, we plot 
fractional residuals about a linear regression model of )( UPf  

on )( LPf  (no intercept).  The RMS deviation of the residuals 
for powers above 2 µW (54 observations out of the 60-point 
data set) is 0.09 % (shown as bands in the figure). To 
understand the magnitude of nonlinearity in the data, we plot a 

correction factor 
)1(

)()(
∆−

=
P

PfPC  in Fig. 3. 

Our results should be interpreted as a proof-of-principle 
effort to establish the feasibility of a power linearization 
method.  Because of the limited amount of data collected for 
this study, we cannot present a full uncertainty analysis of the 
corrected power measurements.  In future studies, we plan to 
quantify sources of variability including random sampling 
errors, instrumental drift due to environmental effects, and 
uncertainty in the prior knowledge of truer . 

C. Detector voltage-power characterization 
Figure 4 shows the experimental setup for measuring the 

detector voltage output as a function of power input. The 
detector is a commercially-packaged tunnel diode with an 
operating range of 0.5 – 2.0 GHz and a nominal output 
impedance of 125 Ω. The detector was temperature-controlled 
using a water jacket (separate from the amplifiers) so that its 
operating temperature could be varied.    

In Fig. 5, we plot detector sensitivity versus ratios of 
voltage and corrected power for three values of the load 
impedance ZL, all at a detector temperature of 20 °C. Fig. 6 
shows similar curves for three different detector temperatures 
with ZL = 125 Ω. The voltage is corrected for an additive bias 
by requiring that the predicted value of voltage from a linear 
model be zero when power is zero. 
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Fig. 3. Power meter correction factor. 
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Fig. 4 Detector voltage-power measurement setup. 
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Fig. 5 Detector sensitivity at T=20 ºC. 

0.39

0.41

0.43

0.45

0.1 1 10

T = 10 °C
T = 30 °C
T = 20 °C

ZL = 125 Ω

Input Power (µW)

S
en

si
tiv

ity
 (m

V
/µ

W
)

 

Fig. 6 Detector sensitivity as a function of power for ZL = 125 Ω. 

The flat response at very low input power is typical of 
tunnel diode detectors. The “super-linear” behavior (i.e., where 
the sensitivity increases with input power) has been described 
for the case of Schottky detector diodes [4]. This complicated 
behavior is not predicted by the polynomial model in [1]. Fig. 5 
indicates that the detector can be modeled as a voltage source 
with a series output resistance of about 100 Ω. The sensitivity 
has a flatter response as ZL decreases: the ratios of the peak 
sensitivity to the low-power sensitivity for the three curves are, 
respectively, 1.13 (ZL=200 Ω), 1.11 (ZL=125 Ω), and 1.07 
(ZL=50 Ω). Although there is a weak dependency of sensitivity 
with temperature (Fig. 6), the shape of the response is similar. 
These sensitivity results are in qualitative agreement with 
independent measurements (using a different technique) of a 
similar detector performed at the NASA Jet Propulsion 
Laboratories [5]. 

We modeled the measured voltage-power curves as a cubic 
B-spline where the number of degrees of freedom of the spline 
is selected by cross-validation [6]. The abscissa is the corrected 
power and the ordinate is the measured voltage.  Based on a 
measurement of voltage, a linear interpolation model to predict 
power P is 
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In Eq. (5), P1, P2, V(P1), V(P2), and V(P) are observed, but 
P is not. 

D. Two-Tone Method 

Fig. 7 shows the experimental setup for two-tone testing. 
The two-tone measurement procedure was similar to that 
described in [1], with the notable exception that the load 
impedance at the detector output was carefully controlled. The 
input impedance of the spectrum analyzer is about 39 Ω. This 
may not be the optimal or even the typical load impedance for 
practical applications. The isolation between the two sources 
was verified by looking at intermodulation products on the 
spectrum analyzer with no detector. The highest 
intermodulation product was 56 dB below the source power 
level. Accordingly, the predicted resolution for the radiometric 
brightness temperature error for a receiver with a noise figure F 
of 4 dB and an input temperature range of 300 K is about 3 
mK, assuming the polynomial model is perfectly applicable for 
this detector. 

We measured the base-band harmonic power as a function 
of input power, load impedance ZL, and detector temperature. 
Fig. 8 shows an example of the harmonic power vs. input 
power for ZL=100 Ω. The deviation in the curves from constant 
slope and the dramatic increase in the power of higher-order 
harmonics at higher input power indicates that the detector is 
not accurately modeled by a quadratic polynomial. 

We also tested the detector at different operating 
temperatures and found no discernable changes in the harmonic 
response. This is not to say that the sensitivity is unchanged; 
merely that the nonlinearity does not vary significantly. We 
also measured the harmonic output of the IF amplifiers used in 
the V-P measurements (Fig. 4). At the highest power level used 
in this experiment, the amplifier harmonic power levels were at 
least 30 dB below the detector harmonic power levels. 

NUMERICAL EXAMPLE 
We estimated the systematic error associated with a linear 

interpolation method for predicting power (or brightness 
temperature) in terms of measured voltage based on calibration 
data (P1, V(P1)) and (P2, V(P2)). We assumed that temperature 
and power are linearly related. In our example we considered a 
radiometer with a low-noise receiver (F=1.8 dB; TN=150 K) 
and an operating range between the calibration temperatures of 
0 K and 300 K. The detector was set to operate between 8 µW 
(-21 dBm) and 24 µW (-16.2 dBm) input power with an output 
load impedance ZL=50 Ω. 

In Fig. 9 we plot the estimated systematic error determined 
from Eq. (5) using our spline model prediction for V(P). In our 
study, we assumed that all powers and voltages were measured 
without random error. Hence, we quantify only systematic 
error. For the same example, the two-tone model predicts a 
maximum systematic error of 5.0 K. 
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Fig. 7 Two-tone measurement setup. 
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Fig. 8 Detector harmonic output for ZL = 100 Ω.  

The variability in our systematic error is due solely to 
uncertainty of the true V-P curve that we estimated as a cubic 
B-spline. We used a nonparametric bootstrap method [7] to 
resample the V-P curve. For each resampled curve, i.e., each 
bootstrap replication of the observed data, we refit the spline 
model and reestimated the linear interpolation error using the 
same procedure employed for the observed data. We plot the 
estimate from the observed V-P curve and ±1σ bands in Fig 9. 
In this approach, the corrected power (the abscissa) is treated as 
deterministic. In the future, we plan to collect more data to 
validate our spline model estimate of the systematic uncertainty 
due to linear interpolation and to quantify random variability 
associated with the interpolation scheme. 
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Fig. 9 Estimate of systematic error associated with linear interpolation method 
based on spline fit model for V-P curve. 

SUMMARY 
The detector’s sensitivity and nonlinear properties are a 

function not only of the input RF power, but also of the load 
impedance presented at the detector’s output.  Selection of the 
load impedance is guided by the goal of minimizing the 
nonlinearity of the detector while preserving adequate 
sensitivity. Lower load impedance improved the uncorrected 
nonlinear detector response at the expense of output signal 
voltage. The detector’s temperature had only a small effect on 
either sensitivity or nonlinear characteristics. 

The assumption that the transfer function is well 
approximated by a global polynomial model, as used in the 
two-tone method, is only valid in special cases (e.g., low output 
load impedance at low input power levels). The load 
impedance should be controlled when performing any detector 
characterization measurements because of these effects. 

V-P characterization offers the opportunity to develop 
accurate global models for the detector transfer function along 
with uncertainty estimates. We demonstrated the use of a 
global regression spline model. In contrast to polynomial 
models, the validity of a regression spline model is not 
restricted to certain operating conditions. In conclusion, the 
systematic uncertainty of the brightness temperature, as 
inferred from a calibration experiment, depends on the 
operating conditions, the test method used for evaluating the 
detector, and the particular prediction model for the nonlinear 
response of the tunnel diode detector. 
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